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Abstract Four clays (two bentonites and two kaolinites)

from Turkey were investigated by X-ray diffraction

(XRD), thermal analysis (DTA/TG-DSC) and surface area

measurement techniques. Mineralogically bentonite sam-

ples were characterized low concentration of montmoril-

lonite and high level of impurities. Both kaolinite samples

mainly contained kaolinite and quartz as major mineral.

TG-DTA curves of all clay samples were measured in the

temperature range 30–1200 �C. The total % weight losses

for the bentonite samples (B1 and B2) and the kaolinite

samples (K1 and K2) were determined as 14.50, 13.42,

5.55 and 11.85%, respectively. Differential Scanning Cal-

orimeter (DSC) analyses of samples were carried out by

heating the samples from 30 to 550 �C. The immersion

heats of clay samples were measured using with a Calvet-

type C-80 calorimeter. The higher exothermic Qimm values

were determined for bentonite samples compared to kao-

linite samples.
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Introduction

Clay is usually defined as any very fine grained, naturally

occurred material that becomes plastic when mixed with a

small amount of water and hardens when dried or fired [1].

Bentonite and kaolinite are natural clay minerals-hydrated

aluminium silicate. The most common dominant mineral in

bentonite is montmorillonite which belongs to the group of

silicate minerals known as dioctahedral smectites [2].

Montmorillonite is a group of smectite clay. Smectite

group includes montmorillonite, beidelite, nontronite (di-

octahedral smectites), and saponite, hectorite (trioctahedral

smectites) [3]. Smectite is 2:1 layer clay mineral formed by

one alumina octahedral sheet placed between two silica

tetrahedral sheets. Feldspar, zeolites, carbonates and silica

polymorphs (quartz and opals) may be found in bentonites

in different extent as nonclay minerals. Minor clay min-

erals generally found in bentonites is illite (I) [4]. Bento-

nites and their major clay minerals smectites are among the

most important industrial raw materials [5–7]. The appli-

cation areas of bentonites depend on quality and quantity of

their smectites and other clay and non-clay minerals [8, 9].

Some physico-chemical properties of bentonites as well as

mineralogy are greatly affected by thermal treatment. Due

to these effects, the investigation of thermal behavior of

bentonite samples has a great importance.

Kaolinite has a 1:1 layer structure composed of a tet-

rahedral layer of SiO4 and an octahedral layer with Al?3 as

the octahedral cation [10]. The summits of the octahedra

are exclusively hydroxyl units. The intermediate anion sites

are occupied by both oxygens and hydroxyls [11]. Suc-

cessive 1:1 layers are bound to each other by hydrogen

bonding of adjacent silica and alumina layers [12].

Kaolinite clays are widely used in various industrial

applications, such as production of ceramics, paper, pig-

ments, cosmetics, etc. Knowledge of the structural and

surface properties of kaolinite is essential in optimizing the

above mentioned applications. The major property, which

determines the utility of the clay for various applications, is

its purity. Pure kaolinite (Al2O3�2SiO2�2H2O) is white in

color and its theoretical composition expressed in terms of

the oxides is 46.54% SiO2, 39.50% Al2O3 and 13.96%
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H2O. Presence of impurities, especially iron- and titanium-

bearing materials, imparts color to kaolin. The mined

kaolin is usually associated with various impurities like

quartz, anatase, rutile, pyrite, siderite, feldspar, etc.,

depending on the origin and depositional environment [13].

These impurities damage the characteristics of the kaolin

and affect its usefulness for various applications.

There are large bentonite and kaolinite reserves in dif-

ferent regions of Turkey. There are numerous studies

regarding the thermal properties of clays [14–43]. How-

ever, there has not been enough study in literature about the

thermal properties of Turkey clays. The main objective of

this study is to investigate four clay samples from Turkey,

in terms of their clay types, chemical compositions,

immersion heats and thermal properties.

Experimental

Material

The bentonite samples named: B1 and B2. The B1 sample

was obtained from Çankırı and the other bentonite sample

(B2) was from Mihalıcık, Turkey. The kaolinite samples

labeled as K1 and K2 obtained from Bilecik and Eskisehir

regions, respectively. The samples were air dried at room

temperature and ground to pass through a \100 lm sieve.

Instrumentation

The XRD diffractograms were obtained with a RINT-2200

instrument, using CuKa radiation (k = 1.54 Å) at 40 kV

and 20 mA, in the range 3–40� 2h. The samples were

scanned with a step of 0.02� 2h.

Simultaneous TG-DTA experiments were carried out

using a Setsys Evolution Setaram thermal analyzer.

Approximately 40 mg of sample was used in each run. All

experiments were performed at a linear heating rate of

10 �C min-1 over the temperature range of 30–1200 �C.

Differential Scanning Calorimetric (DSC) analyses of

samples were carried out by heating the samples from 30 to

550 �C at 5 �C min-1 rate using a Setaram DSC 151

analyser.

BET surface areas were calculated from the first part of

the N2 adsorption isotherm (P/Po \ 0.3) obtained at liquid

nitrogen temperature with N2 in Autosorb-1C equipment

previously degassed at 125 �C for 6 h prior to measure-

ment. High-purity (99.99%) nitrogen was used in adsorp-

tion measurements.

The enthalpies of immersion (in water) of the clay

samples were determined with a Setaram Calvet-type C 80

Immersion Calorimeter at 30 �C. In order to remove the

adsorbed water, about 400 mg of material was heated for

24 h at 120 �C before each calorimetric experiment.

Results and discussion

Characterization of bentonite and kaolinite clays

Four local samples were investigated through chemical

analysis. The chemical analysis of clay samples was carried

out and the data were presented in Table 1. The chemical

composition of bentonite samples indicates the presence of

silica and alumina as major constituents, along with traces

of sodium, potassium, iron, magnesium, calcium and tita-

nium oxides in the form of impurities. As shown in this

table, the weight percent of calcium contained in the ben-

tonite samples is higher than that of sodium. The MgO

content ranges between 2 and 4.5%. In both cases, the

Fe2O3 content is high, about 4–8%.

The K1 clay is rich in SiO2 (77.5%) and poor in Al2O3

(10%). Its loss on ignition (LOI) value is low (7.11%). The

chemical composition indicates presence of considerable

amounts of silica-bearing impurity in the clay. The SiO2

(50.37%) content of the K2 sample are considerably less

and Al2O3 (34.64%) content and LOI value (11.79%) are

more than those of the K1 sample (Table 1). Some metals

as Fe2O3, TiO2, K2O and MgO have higher content in the

K1 sample than the K2 sample. As seen from Table 1,

concentrations of SiO2 greater than the theoretical value

can be explained by the presence of various amounts of

quartz in both of kaolinite samples as indicated by X-ray

diffraction [13].

Table 1 Chemical analyses in oxides % for natural clay samples

Chemical analysis B1 B2 K1 K2

SiO2 (%) 50.32 42.46 77.57 50.37

Al2O3 (%) 13.86 10.82 10.05 34.64

Fe2O3 (%) 4.72 7.83 1.92 0.81

Na2O (%) 2.72 2.23 – 0.16

K2O (%) 0.90 2.29 0.57 1.31

CaO (%) 4.23 3.06 1.31 0.22

MgO (%) 2.46 4.59 0.78 0.31

TiO2 (%) 0.61 0.83 0.40 0.19

SO3 (%) 0.66 0.06 0.26 0.02

MnO (%) 0.03 0.12 – –

P2O5 (%) 0.06 0.06 – 0.13

Others 0.25 0.30 0.03 0.05

LOI (%) 19.18 25.35 7.11 11.79
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X-ray diffraction

The XRD patterns of the bentonite and kaolinite samples are

illustrated in Figs. 1 and 2. The B1 sample (Fig. 1) mainly

contained montmorillonite (14.96 and 4.45 Å). Some

accessory minerals such as calcite (3.03 and 2.49 Å), albite

as plagioclase (3.18 and 2.56 Å) and quartz (4.26, 3.34 and

2.28 Å) are observed. Besides containing clay minerals such

as montmorillonite (13.50, 4.50 and 2.56 Å) and illite

(2.95 Å), the B2 bentonite contained also quartz (4.26, 3.34

and 2.45 Å), albite (3.19 Å), cristobalite (4.03 Å) and

dolomite (2.89 Å). These minerals were identified by

their characteristic XRD peaks [13]. Mineralogically

bentonite samples were characterized low concentration of

montmorillonite and high level of impurities. The estimated

montmorillonite contents are less than 50%.

The XRD pattern of the K1 clay (Fig. 2) showed sharp

peaks at d = 7.15, 4.45 and 3.57 Å due to kaolinite and

d = 4.25, 3.34, 2.45 and 2.28 Å due to quartz, indicating

that the later was the major contaminant of the clay. The

XRD pattern of the K2 clay (Fig. 2) exhibited prominent

peaks due to kaolinite (d = 7.17, 4.36, 3.85, 3.58 and

2.38 Å) and quartz (d = 4.26, 3.34 and 2.45 Å) and

muscovite (d = 10.03 and 5 Å). The basal spacing of the

K2 sample (7.17 Å) was slightly bigger than that of the K1

sample (7.15 Å).

Specific surface area

Applications of BET model give the specific surface areas of

94 m2/g, 116 m2/g, 9 m2/g and 16 m2/g for natural B1, B2,

K1 and K2 samples, respectively. The nitrogen adsorption

isotherms on all the samples at 77 K are given in Figs. 3 and

4. The shape of N2 adsorption isotherms of the samples

correspond to the type II [44] according Gregg and Sing

[45]. It is found that BET surface area of the B1 bentonite

was low compared to the B2 bentonite. The N2-BET specific

surface area for the K2 was nearly twice as large as obtained

value for K1. The presence of considerable amount of quartz

in the K1 sample may affect its surface area.

Fig. 1 XRD patterns of the natural B1 and B2 bentonite samples

Fig. 2 XRD patterns of the natural K1 and K2 kaolinite samples

Fig. 3 The isotherms of the adsorption of nitrogen on the natural B1

and B2 bentonite samples

Fig. 4 The isotherms of the adsorption of nitrogen on the natural K1

and K2 kaolinite samples
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Thermal properties

Any physical, physicochemical and/or chemical transfor-

mation takes place with a thermal effect, which leads to a

difference between the sample and reference temperature.

Thus, the respective endo- or exothermic peaks shown in

DTA curves are very useful ways to establish transforma-

tions with or without mass loss and have been used as one of

the major tools for qualitative clay characterization [46, 47].

Many studies have been devoted to the behavior of

kaolinite on heating. Below 670 K, a reversible dehydr-

oxylation event occurs. Above 670 K kaolinite undergoes

an irreversible change containing the loss of structurally

bonded water, indicated by an endothermic peak in a DTA

curve [48].

The DTA curve of the K1 sample shows three endo-

thermic peaks (Fig. 5a). The DTA curve of this sample

shows two small endothermic peaks at 156 and 271 �C

corresponding to the loss of adsorbed and interlayer water.

The third peak at 577 �C corresponds to the loss of the

structural OH of kaolinite. After the three endothermic

events, only a less intense exothermic peak at *1000 �C

reflecting the crystallization of new phase is recorded.

DTA curve of K2 sample (Fig. 5b) shows a sharp endo-

thermic kaolinite dehydroxylation peak at 539 �C and, as the

mineral has a high purity degree, a sharp exothermic peak

occurs at 994 �C. The K2 sample loses its constitutional-OH

groups in the endothermic peak temperature range and forms

metakaolinite. This endothermic peak (Fig. 5b) is in good

agreement with the reported DTA curve shown by previous

authors for well crystallized kaolinites [15]. The occurrence

of exothermic peak was due to formation of spinal phase.

Mass changes of the samples studied plotted as a func-

tion of temperature are shown in Fig. 5a and b. The TGA

curves for both samples exhibit a similar two-step weight

loss. The first step (starting at 30 �C) corresponds to the

thermodesorption of physically adsorbed water. The sec-

ond one (starting at 400 �C) reflects the loss of structurally

bonded water. The total loss of K1 and K2 were determined

as 5.55 and 11.85%, respectively.

TG and DTA curves of the natural bentonite samples are

given in the Fig. 6a and b for the temperature range of

30–1200 �C and the related mass losses are given in

Table 2. Figure 6a and b shows the mass loss of bentonite

samples with the increasing temperature.

The amount of water uptake of the bentonite samples

depend on the relative humidity of the environment to

which they are exposed [32]. The endothermic peaks of the

B1 (Fig. 6a) are attributed to the evolution of moisture and

interlayer water up to 200 �C. The structural OH groups are

removed in the region 400–800 �C. The first endothermic

mass loss 8.25% between 30 and 400 �C for the B1 sample

is due to the dehydration of interparticle water, adsorbed

water and interlayer water. The second endothermic mass

loss 5.74% between 400 and 800 �C with the maximum

rates at 492 and 703 �C are due to the formation of the

dehydroxylation water.

The thermal properties of the B2 are shown in Fig. 6b,

where the DTA curve have the endothermic peaks at 107,

503 and 746 �C and exothermic peak at high temperature

above 1000 �C. The DTA thermogram of the B2 sample

exhibits low-temperature endothermic peak at about

107 �C within adsorbed and exchangeable cation coordi-

nated water is released. Dual endothermic peaks at 503 and

746 �C represented dehydroxylation of sample. Exother-

mic peak at high temperature above 1000 �C corresponds

mainly due to crystallization of new phases. The temper-

ature interval and mass loss percentage by the dehydration,

dehydroxylation, amorphization and recrystallization are

observed from the DTA and TG curves as 30–400 �C and

5.51%, 400–800 �C and 7.58%, 800–1200 �C and 0.33%,

respectively. The total water content of B1 and B2 were

determined as 14.5 and 13.42%, respectively. The results

are summarized in Tables 2 and 3.

The results of the DSC analysis for kaolinite and ben-

tonite samples are presented in Figs. 7 and 8, respectively.

The K1 sample (Fig. 7a) shows one endothermic peak at

179 �C, attributed to elimination of adsorbed (or absorbed)

Fig. 5 Thermogravimetric analysis (TG) and differential thermal

analysis (DTA) curves for the kaolinite samples
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water, and one peak centered at 508 �C, attributed to a

dehydroxylation process to metakaolinite [49]. The K2

sample (Fig. 7b) shows one endothermic peak centered at

198 �C, corresponding to elimination of absorbed and

adsorbed water. The other peak centered at 532 �C corre-

sponds to elimination of crystallization water.

DSC curve for B1 sample (Fig. 8a) up to 450 �C showed

an intense loss of water at 108 and 227 �C, which is

attributed to the loss of interlayer water. The B2 sample

(Fig. 8b) in the range of 50–270 �C exhibited two endo-

thermic peaks at 125 and 217 �C. In this region, heat is

absorbed for the dehydration of interlayer water contained

in the bentonite samples. In addition, the B2 clay showed

an endothermic peak at 486 �C, which was assigned to the

dehydration and loss of crystal structure.

Heats of immersion

The immersion is the process where a solid–liquid interface

is created starting from a pure liquid surface and a pure

solid phase [50]. When a solid is immersed into a non-

reacting liquid a given amount of heat is evolved [51]. This

measured heat is known as immersion heat, Qimm (J/g).

Many researchers have been investigated immersion heat

values of clay minerals in liquid water [50, 52–58].

In these immersion experiments, water was used as

immersion liquid for clay samples with hydrophilic surfaces.

The whole system is located into the calorimeter and time is

allowed for temperature equilibration between the sample

set-up and the calorimeter. Once the thermal equilibrium

was achieved in calorimeter, the ampoule of sample con-

tainer was broken and the liquid water allowed to entering

into the ampoule and wets the sample. The heat flow evo-

lution was monitored as a function of time. Integration of this

signal gives the total experimental heat of immersion.

The measurement of immersion heats with a Calvet

calorimeter is a simple and convenient method. When

montmorillonite clays are in contact with water or water

vapor, the water molecules penetration between the unit

layers through hydrogen bonds between water molecules

and the hydroxyl group on clay structure cause an

Fig. 6 Thermogravimetric analysis (TG) and differential thermal

analysis (DTA) curves for the bentonite samples

Table 2 Water loss-TG of the kaolinite samples

Sample 30–400 �C 400–1200 �C Total %

K1 1.84 3.71 5.55

K2 0.70 11.15 11.85

Table 3 Water loss-TG of the bentonite samples

Sample 30–400 �C 400–800 �C 800–1200 �C Total %

B1 8.25 5.74 0.51 14.50

B2 5.51 7.58 0.33 13.42

Fig. 7 Differential scanning calorimeter (DSC) curves for the

kaolinite samples
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exothermic reaction [59]. The heats of immersion of the

bentonite samples (B1 and B2) and the kaolinite samples

(K1 and K2) measured with a Calvet calorimeter at 30 �C

were determined as -39.19 J/g, -30.45 J/g, -3.18 J/g and

-5.13 J/g, respectively (Table 4). The presented values are

generally the average values of three experiments.

Conclusions

In the present work, clay samples were characterized

using X-ray diffraction (XRD), thermal analysis (DTA/TG-

DSC) and surface area measurement methods. Both the

mineral and chemical purities of the powder samples were

established.

The results of this investigation show that the bentonite

sample (B1) from Çankırı, Turkey, mainly consists of

montmorillonite with varying amounts of quartz, albite,

cristobalite and calcite. The other bentonite sample (from

Mihalıcık, Turkey) contains montmorillonite as major clay

mineral and less amount of illite as other clay mineral.

The rest are albite as plagioclase, cristobalite, quartz and

dolomite.

It was determined that the Bilecik kaolin (KI) mainly

contained kaolinite and quartz as the major mineral. The K2

sample showed a predominant simple phase as kaolinite and

also muscovite phases as clays, and quartz as impurity.

Minor quartz was present in K2 sample compared to KI

sample.

In the DTA/TG curves, both bentonite samples studied

in this research exhibit three endothermic effects on heat-

ing. The first and dominant endothermic mass losses of

8.25 and 5.51% between 30 and 400 �C for the B1 and B2

bentonite samples, respectively are due to the dehydration

of interparticle water, adsorbed water and interlayer water.

The bentonite clay minerals showed two endotherms

between 400 and 800 �C which evidences dehydroxylation

of the silicate minerals. Above this temperature, the loss of

water was accompanied by a slight change in the dimen-

sions of the structure.

It was determined that the DTA curves of K1 and K2

clay samples showed two endothermic peaks between 100

and 300 �C corresponding to the loss of adsorbed and

interlayer water. The peaks between 400 and 800 �C cor-

responded to the loss of the structural OH of kaolinite and

associated with kaolinite–metakaolinite phase transition.

The exothermic peak at 994 �C was related to the

appearance of new crystallization.

It was observed that the DSC curve of the K1 and K2

samples showed one endothermic peak up to 200 �C,

attributed to elimination of adsorbed water, and one

peak in the range of 500–535 �C, ascribed to the dehy-

droxylation process to metakaolinite. DSC curves of

bentonite samples exhibited that endothermic reaction

took place between 100 and 250 �C corresponding to

water loss from the clay surface and interlayered space.

At about 500 �C, the second endotherm was concerning

the beginning of the collapse of the interlayered

structure.

The heats of immersion of the bentonite samples (B1

and B2) and the kaolinite samples (K1 and K2) were

measured with a Calvet calorimeter at 30 �C. The higher

exothermic Qimm values were determined for bentonite

samples compared to kaolinite samples.
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Fig. 8 Differential scanning calorimeter (DSC) curves for the

bentonite samples

Table 4 BET surface areas and immersion heats of the natural clay

samples

Sample BET surface area/m2/g Immersion heat/J/g

B1 94 -39.19

B2 116 -30.45

K1 9 -3.18

K2 16 -5.13
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